第二百六十九章
“嘿,这届的菲奖得主很强吗?”
“当然,我感觉最弱的那个,都有1.5个西蒙。”
“不不不,我感觉最弱的那个起码有1.7个西蒙。”
“这届天才名单里的人都不行啊,连0.8个西蒙这个平均线都没过。”
“呵,我未来,一定要成为2.0个西蒙的超级大佬!”
西蒙的脑海里,一时间闪过数张画面。
一想到自己未来有可能会成为一个计量单位,西蒙就有一种浑身蛋疼的感觉。
因为那画面太美,简直不敢想象。
西蒙想要名留青史,这没错。
但并非是通过这种方式。
西蒙幽怨的眼神望着顾律。
而顾律一副像是什么都未发生过的样子,眼睛一眨不眨的盯着台上。
“开始了。”
顾律低声开口。
果然,台上的康斯坦丁已经打开幻灯片,将本次一小时会议报告的题目投影到幕布上。
而在见到康斯坦丁这次会议报告的题目,台下不少人都是瞳孔猛地一缩。
《Proof of Equivalence Prime Conjecture when K is Even》。
翻译过来,就是《当K为偶数时,等差素数猜想的证明》!
素数,一直是数论领域老生常谈的问题。
像是著名的哥德巴赫猜想问题,孪生素数猜想问题,西潘塔猜想,研究的对象皆是素数。
而这个等差素数猜想,自然也不例外。
等差素数猜想,是在上个世纪八十年代,由两位米国数学家提出的一个数论领域的著名猜想。
等差素数猜想的内容很简单。
【存在任意长度的素数等差数列!】
就这么简单的一句话。
素数是什么,大家都清楚。
只能被一和自身整除的自然数就是素数。
而等差数列,高中就学过。
简单来说,就是问,是否存在一个全部由素数组成的等差数列,而且这个数列包含的素数个数为任意个。
可以说,这个等差素数猜想,只要是个有高中生学历的人,都可以轻松的读懂。
但读懂是一回儿事,能否证出来又是另一回事了。
哥德巴赫猜想还是连小学生都能看懂呢,但几百年过去,这座大山仍旧屹立在那。
和哥德巴赫猜想一样。
等差素数猜想虽然简单易懂,但证明起来,却并非是一件易事。
别说是高中生,连硕士生、博士生,面对这种级别的猜想,依旧是束手无策。
至于那些想用初等数论知识将其证明的民科,只能用天真二字来形容。
早在数十年前,数论领域的诸位大佬便一致认为,想要成功证明出等差素数猜想,初等数论的知识是百分百不可能的。
起码,要高等数论,甚至更为高深晦涩的知识和理论才可以。
…………
再说一下等差素数猜想在数论界的地位。
之前就提过,数论领域的猜想是最多的。