当前位置:酷我小说>都市言情>数学屋> 第四十章对角线分割
阅读设置(推荐配合 快捷键[F11] 进入全屏沉浸式阅读)

设置X

第四十章对角线分割(1 / 2)

 核桃在纸上画了几个多边形,就说:我们还是要谈对角线。只不过不是谈它的数量,而是分割。对角线分割由分割点实现,分割点其实就是对角线的交点。由于分割点数量的增加,点距就出现了。点距顾名思义就是两个分割点之间的距离。在某种程度上,点距会影响对角线分割分割。

由分割点为顶点的多边形就称为分割多边形,而它和原多边形存在一种对应关系。它们是内含和外延的关系。同比例分割是对角线分割中的一种,分为同向和异向。不管哪种,原多边形的两条边都会体现出这种比例。

我们都知道有直线对角线,但是有谁想过曲线对角线吗?我估计大家没有想过。光是画出曲线对角线就需要花费一定的时间思考作图方法,更何况还要进行观察。而且曲线对角线还有两个方向,那么对角线分割必定更加复杂。曲线对角线和直线对角线其实就是一个圆的弧和弦,运用有关圆的定理就可以。

在做曲线对角线时,要注意弦弧角不能大于对角线与一条边的夹角的一半。否则,曲线对角线就会在外面。

埃斯皮诺萨说:说到对角线分割,我就想到了交形。在对角线多边形中,就有交形。交形是一种特殊的凹凸混合多边形。

小尼说:在四边形里,如果两条对角线满足1:2分割而且1所在的线都在同一边。那么,四边形的其中一边一定是最短边的三倍。当不再1不在同一边时,依据夹角的不同有各种性质。

上一章 目录 +书签 下一页