这个看完了可以和朋友聚会的时候吹嘘一下自己的高大上。
2016年诺贝尔物理学奖授予三位科学家——戴维索利斯、邓肯霍尔丹和迈克尔科斯特利茨,以表彰他们发现了物质拓扑相,以及在拓扑相变方面作出的理论贡献。
何为“拓扑”?斯坦福大学物理学教授张首晟介绍,拓扑是一个几何学概念,描述的是几何图案或空间在连续改变形状后还能保持不变的性质。
拓扑很高大上?其实,它有最接地气的定理
想象一个表面长满毛的球体,你能把所有的毛全部梳平,不留下任何像鸡冠一样的一撮毛或者像头发一样的旋吗?拓扑学告诉你,这是办不到的。
这个定理被称为“毛球定理”,由布劳威尔首先证明。用数学语言来说就是,在一个球体表面,不可能存在连续的单位向量场。这个定理可以推广到更高维的空间:对于任意一个偶数维的球面,连续的单位向量场都是不存在的。
毛球定理在气象学上有一个有趣的应用:由于地球表面的风速和风向都是连续的,因此由毛球定理,地球上总会有一个风速为0的地方,也就是说气旋和风眼是不可避免的。
毛球定理还有一个意想不到的“应用”是在电子游戏里!很多人在玩第一人称射击游戏的时候会发现一个问题:当你上移鼠标,让你的角色抬头看天的时候,一个手抖就会发现自己的角色瞬间转了一百八十度;另一些游戏里同样的现象会发生在朝脚底下看的时候。这就是你遭遇了毛球的“旋”。
出现这一现象是因为游戏引擎需要解决一个数学问题:玩家用鼠标输入的数据只是一个视线轴,游戏画面其实理论上可以绕这个轴任意旋转的。那么实际的画面到底应该哪里是上哪里是下呢?这就需要给每一个鼠标数据对应一个方向——也就是一个向量场。不幸的是,毛球定理指出这个场一定有至少一个不连续点,所以在这个点附近,鼠标极其微小的运动都会导致画面大幅翻转。
而vr设备就不存在这个问题了,因为决定vr画面的不仅仅是鼠标位置这一个变量,它有一整个头戴设备呢,所以就不会出现旋。
“任何一个”这个词是很宽松的——组成三明治的食材不必相互接触,每个食材本身也不必是一片而可以是很多片。哪怕你把三明治放进搅拌机打成了酱,或者撕碎了通通喂给鸭子,都没有关系——只要你的三明治分成三部分,那就一定有一刀,能够把每一部分都切成等量的两半。
它还可以扩展到n维的情况:如果在n维空间中有n个物体,那么总存在一个n-1维的超平面,它能把每个物体都分成“体积”相等的两份。